OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy rule-based ensemble with use of linguistic associations mining for time series prediction
Citace
Štěpničková, L., Štěpnička, M. a Sikora, D. Fuzzy rule-based ensemble with use of linguistic associations mining for time series prediction.
In:
Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT).
Atlantis Press, 2013. s. 408-415. ISBN 978-90786-77-78-9.
Subtitle
Publication year:
2013
Obor:
Obecná matematika
Number of pages:
8
Page from:
408
Page to:
415
Form of publication:
Elektronická verze
ISBN code:
978-90786-77-78-9
ISSN code:
Proceedings title:
Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)
Proceedings:
Mezinárodní
Publisher name:
Atlantis Press
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
European Society for Fuzzy Logic and Technology
Conference venue:
Milano
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000327668700063
EID:
Key words in English:
Time series; fuzzy rules; ensembles; Fuzzy Rule Based Ensemble; fuzzy GUHA; linguistic associations; perception-based logical deduction
Annotation in original language:
There are many various methods to forecast time series. However, there is no single forecasting method that generally outperforms any other. Consequently, there always exists a danger of choosing a method that is inappropriate for a given time series. To overcome such a problem, distinct ensemble techniques are being proposed. These techniques combine more individual forecasting methods. In this contribution, we employ the so called fuzzy rule-based ensemble to determine the weights based on time series features such as trend, seasonality or stationarity. For identification of fuzzy rule base, we use linguistic association mining. An exhaustive experimental justification is provided.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/13:A14017T8
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules