OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Arithmetics of Extensional Fuzzy Numbers -- Part II: Algebraic framework
Citace
Holčapek, M. a Štěpnička, M. Arithmetics of Extensional Fuzzy Numbers -- Part II: Algebraic framework.
In:
Proc. of FUZZ-IEEE 2012.
IEEE, 2012. s. 1525-1532. ISBN 978-1-4673-1506-7.
Subtitle
Publication year:
2012
Obor:
Obecná matematika
Number of pages:
8
Page from:
1525
Page to:
1532
Form of publication:
Tištená verze
ISBN code:
978-1-4673-1506-7
ISSN code:
Proceedings title:
Proc. of FUZZ-IEEE 2012
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
FUZZ-IEEE
Místo konání konference:
Brisbane
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000309188200212
EID:
Key words in English:
fuzzy numbers; arithmetic; field; group, MI-group; Mi-field
Annotation in original language:
In the first part of this contribution, we proposed extensional fuzzy numbers and a working arithmetic for them that may be abstracted to so-called many identities algebras (MI-algebras, for short). In this second part, we show that the proposed MI-algebras give a framework not only for the arithmetic of extensional fuzzy numbers, but also for other arithmetics of fuzzy numbers and even more general sets of real vectors used in mathematical morphology. This entitles us to develop a theory of MI-algebras to study general properties of structures for which the standard algebras are not appropriate. Some of the basic concepts and properties are presented here.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/12:A13015NH
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules