OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Smart time seris prediction
Citace
Volná, E., Janošek, M., Kocian, V. a Kotyrba, M. Smart time seris prediction.
In:
angičtina.
Berlin Heidelberg: Springer, 2013. Springer, 2013. s. 211-220. ISBN 978-3-642-32921-0.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
10
Page from:
211
Page to:
220
Form of publication:
Tištená verze
ISBN code:
978-3-642-32921-0
ISSN code:
2194-5357
Proceedings title:
angičtina
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Berlin Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Soft Computing Models in Industrial and Environmental Applications
Místo konání konference:
Ostrava
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000312974600022
EID:
Key words in English:
time seris, prediction, neural net-works
Annotation in original language:
This article deals with a smart time series prediction based on characteristic patterns recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history for the purpose of prediction of sub-sequent trader?s action. The pattern recognition approach is based on neural networks. We focus on reliability of recognition made by developed algorithms with optimized patterns which also causes the reduction of the calculation costs
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/13:A1301558
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules