OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
On the Potential of Fuzzy Rule-Based Ensemble Forecasting
Citace
Sikora, D., Štěpnička, M. a Vavříčková, L. On the Potential of Fuzzy Rule-Based Ensemble Forecasting.
In:
Proc. of 7th International Conference on Soft Computing Models in Industrial and Environmental Applications.
Berlín: Springer-Verlag New York, 2013. Springer-Verlag New York, 2013. s. 487-496. ISBN 978-3-642-33017-9.
Subtitle
Publication year:
2013
Obor:
Obecná matematika
Number of pages:
10
Page from:
487
Page to:
496
Form of publication:
Tištená verze
ISBN code:
978-3-642-33017-9
ISSN code:
2194-5357
Proceedings title:
Proc. of 7th International Conference on Soft Computing Models in Industrial and Environmental Applications
Proceedings:
Mezinárodní
Publisher name:
Springer-Verlag New York
Place of publishing:
Berlín
Country of Publication:
Název konference:
7th International Conference on Soft Computing Models in Industrial and Environmental Applications
Conference venue:
Ostrava
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000312969500050
EID:
Key words in English:
Time series, ensembles, fuzzy rules
Annotation in original language:
There is no individual forecasting method that is generally for any given time series better than any other method. There always exists a danger that for a given time series the method is inappropriate. To overcome such a problem, distinct ensemble techniques that combine more forecasting methods are designed. These techniques construct a forecast as a (linear) combination of forecasts by individual methods. This contribution provides a novel ensemble technique that determines the weights based on time series features. The knowledge how to determine weights comes from the regression analysis. In order to capture the desirable issues of robustness and mainly of interpretability, the knowledge how to combine individual methods is encoded in a linguistic description. The mechanism of determination of particular weights is PbLD -- a unique fuzzy inference technique . An experimental justification is provided in order to confirm the promising potential of the given direction of research.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/13:A130150A
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules