OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Pattern recognition algorithm optimization
Citace
Volná, E., Janošek, M., Kotyrba, M. a Kocian, V. Pattern recognition algorithm optimization.
In:
Nostradamus.
Berlin Heidelberg: Springer, 2013. Springer, 2013. s. 251-260. ISBN 978-3-642-33226-5.
Subtitle
Publication year:
2013
Obor:
Informatika
Number of pages:
10
Page from:
251
Page to:
260
Form of publication:
Tištená verze
ISBN code:
978-3-642-33226-5
ISSN code:
2194-5357
Proceedings title:
Nostradamus
Proceedings:
Publisher name:
Springer
Place of publishing:
Berlin Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Nostradamus: Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems
Místo konání konference:
Ostrava
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000313767300026
EID:
Key words in English:
Elliott waves recognition, prediction, neural network
Annotation in original language:
In this article, a short introduction into the field of pattern recognition in time series has been given. Our goal is to find and recognize important patterns which repeatedly appear in the market history. We focus on recognition made by the proposed algorithms based on artificial neural networks. We used a simple Hebb classifier with a proposed modification. Finally, we present comparison results of trading based on both recommendations: using proposed Hebb neural network implementation, and human expert.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/13:A13014ZW
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules