OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Binary operations in fuzzy sets and cut systems
Citace
Močkoř, J. Binary operations in fuzzy sets and cut systems.
In:
15th Czech-Japan Seminar on Decision Making and Data Analysis under Uncertainty: Proceedings 2012-09-27 Osaka.
Subtitle
Publication year:
2012
Obor:
Obecná matematika
Number of pages:
7
Page from:
Page to:
Form of publication:
Tištená verze
ISBN code:
ISSN code:
Proceedings title:
Proceedings
Proceedings:
Mezinárodní
Publisher name:
Place of publishing:
Osaka
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
15th Czech-Japan Seminar on Decision Making and Data Analysis under Uncertainty
Místo konání konference:
Osaka
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
residuated lattice; set with similarity relation; fuzzy set; cut system
Annotation in original language:
It is well known that any fuzzy set $X$ in a classical set $A$ with values in a complete (residuated) lattice $\Omega$ can be identified with a system of $\alpha$-cuts $X_{\alpha}$, $\alpha\in\Omega$. In this paper we are interested in relationships between sets of fuzzy sets and sets of f-cuts in an $\Omega$-set $(A,\delta)$ in corresponding categories $\Set$ and $\Setr$, endowed with binary operations extended either from binary operations in the lattice $\Omega$, or from binary operations defined on a set $A$ by the generalized Zadeh's extension principle. We prove that the final binary structures are (under some conditions) isomorphic.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules