OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra informatiky a počítačů (31400)
Název:
Ensembles of neural-networks-based classifiers
Citace
Kocian, V. a Volná, E. Ensembles of neural-networks-based classifiers.
In:
18th International Conference on Soft computing Mendel 2012: Mendel 2012 2012-06-27 Brno.
Brno: Brno Univerzity of Technology, 2012. s. 256-261. ISBN 978-80-214-4540-6.
Podnázev
Rok vydání:
2012
Obor:
Informatika
Počet stran:
6
Strana od:
256
Strana do:
261
Forma vydání:
Tištená verze
Kód ISBN:
978-80-214-4540-6
Kód ISSN:
1803-3814
Název sborníku:
Mendel 2012
Sborník:
Mezinárodní
Název nakladatele:
Brno Univerzity of Technology
Místo vydání:
Brno
Stát vydání:
Sborník vydaný v ČR
Název konference:
18th International Conference on Soft computing Mendel 2012
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
2-s2.0-84882982985
Klíčová slova anglicky:
Ensembles generation; Neural networks; One-cycle adaptation; Weak learners diversity; Weak learners generation
Popis v původním jazyce:
In the paper we describe an experimental study which was aimed to explore the possibility of using neural network as the base algorithms for so called weak classifiers. We were interested in the possibility of using neural networks in place of commonly used decision trees. Our analysis is based on the idea that it is more efficient to create a number of imperfectly adapted networks small in the topology than one perfectly adapted a sophisticated network. Moreover we assume, that such simple networks will still be more accurate than decision trees. In our experiment neural networks went only through one adaptation cycle. We have generated experimental ensembles of 100 weak classifiers based on five types of neural networks. A total of 3,240 of such ensembles have been created and tested. We have proposed filtering of input as the new diversity-achieving method. We have tested this method in common with two others methods. The experiment has been conducted over the MNIST database [1].
Popis v anglickém jazyce:
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules