OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Rule-Based Ensemble Forecasting: Introductory Study
Citace
Sikora, D., Štěpnička, M. a Vavříčková, L. Fuzzy Rule-Based Ensemble Forecasting: Introductory Study.
In:
Synergies of Soft Computing and Statistics for Intelligent Data Analysis (Advances in Intelligent Systems and Computing)).
Heidelberg: Springer, 2013. Springer, 2013. s. 379-387. ISBN 978-3-642-33041-4.
Subtitle
Publication year:
2013
Obor:
Obecná matematika
Number of pages:
9
Page from:
379
Page to:
387
Form of publication:
Tištená verze
ISBN code:
978-3-642-33041-4
ISSN code:
Proceedings title:
Synergies of Soft Computing and Statistics for Intelligent Data Analysis (Advances in Intelligent Systems and Computing))
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
6th International Conference on Soft Methods in Probability and Statistics
Místo konání konference:
Konstanz
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000312969600041
EID:
Key words in English:
Time series; Ensembles; Fuzzy rules
Annotation in original language:
There is no individual forecasting method that is generally for any given time series better than any other method. Thus, no matter the efficiency of a chosen method, there always exists a danger that for a given time series the chosen method is inappropriate. To overcome such a problem and avoid the above mentioned danger, distinct ensemble techniques that combine more individual forecasting methods are designed. These techniques basically construct a forecast as a linear combination of forecasts by individual methods. In this contribution, we construct a novel ensemble technique that determines the weights based on time series features. The protocol that carries a knowledge how to combine the individual forecasts is a fuzzy rule base (linguistic description). An exhaustive experimental justification is provided. The suggested ensemble approach based on fuzzy rules demonstrates both, lower forecasting error and higher robustness.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/13:A13014MF
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules