OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Residuated Lattices as Extensions of Elementary Algebraic Structures
Citace
Perfiljeva, I. Residuated Lattices as Extensions of Elementary Algebraic Structures.
In:
Quantitative Logic and Soft Computing.
Singapore: World Scientific, 2012. World Scientific, 2012. s. 581-588. ISBN 978-981-4401-52-4.
Subtitle
Publication year:
2012
Obor:
Obecná matematika
Number of pages:
8
Page from:
581
Page to:
588
Form of publication:
Tištená verze
ISBN code:
978-981-4401-52-4
ISSN code:
Proceedings title:
Quantitative Logic and Soft Computing
Proceedings:
Mezinárodní
Publisher name:
World Scientific
Place of publishing:
Singapore
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Quantitative logic and soft computing (QL&SC) 2012
Místo konání konference:
Xi'an
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Residuated, commutative $\ell$-monoid; orbit; translation
Annotation in original language:
We prove that each residuated commutative l-monoid is a monoid of all residuated endomorphisms of some universal algebra. This result demonstrates that similarly to groups and semigroups, a monoidal operation of a residuated commutative l-monoid is represented by a composition of endomorphisms that are moreover, residuated.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/12:A13013AC
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules