OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
A Comparison of Two Adaptation Approaches in Differential Evolution
Citace
Poláková, R. a Tvrdík, J. A Comparison of Two Adaptation Approaches in Differential Evolution.
In:
Lecture Notes in Computer Science 7269.
Berlin Heidelberg: Springer-Verlag, 2012. Springer-Verlag, 2012. s. 317-324. ISBN 978-3-642-29352-8.
Subtitle
Publication year:
2012
Obor:
Informatika
Number of pages:
8
Page from:
317
Page to:
324
Form of publication:
Tištená verze
ISBN code:
978-3-642-29352-8
ISSN code:
Proceedings title:
Lecture Notes in Computer Science 7269
Proceedings:
Mezinárodní
Publisher name:
Springer-Verlag
Place of publishing:
Berlin Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
ICAISC 2012 - SIDE 2012
Místo konání konference:
Zakopane
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000314209500037
EID:
Key words in English:
global optimization, differential evolution, adaptation, experimental comparison
Annotation in original language:
The influence of used adaptive approach on the performance of algorithm is addressed. Adaptive approaches applied in competitive differential evolution and in differential evolution using an ensemble of mutation strategies and parameter values are compared. The approaches used in these algorithms can be divided into two parts: adaptive mechanism and pool of strategies. Four variants of algorithm combining mutually these two parts are compared experimentally in six benchmark functions at two levels of dimension. It was found that the variants using the pool of ensemble of mutation strategies and parameter values need mostly less number of function evaluation to reach the stopping condition, while the algorithms with pool of competitive differential evolution are more reliable.
Annotation in english language:
The problem of optimal partitioning by minimizing pooled-within-variance of groups is addressed. Three state-of-the-art adaptive differential evolution algorithms are compared on four real-world data sets. A~novel hybrid differential evolution algorithm, including k-means algorithm for local search is proposed. The experimental comparison is done with either the plain adaptive differential evolution variants or the hybrid algorithms. Experimental results showed that hybrid algorithms are substantially better preforming when compared with plain differential evolution variants. Among hybrid variants, the competitive differential evolution appeared to be the most efficient.
References
Reference
R01:
RIV/61988987:17610/12:A13012OM
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules