OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Towards a General Description of Translation-Invariant and Translation-Covariant Linear Transformations: A Natural Justification of Fourier Transforms and Fuzzy Transforms
Citace
Perfiljeva, I. a Kreinovich, V. Towards a General Description of Translation-Invariant and Translation-Covariant Linear Transformations: A Natural Justification of Fourier Transforms and Fuzzy Transforms.
In:
Proceedings of 2011 IFSA World Vongress - AFSS INternational Conference.
s. 2111-2116. ISBN 978-602-99359-0-5.
Subtitle
Publication year:
2011
Obor:
Obecná matematika
Number of pages:
6
Page from:
2111
Page to:
2116
Form of publication:
ISBN code:
978-602-99359-0-5
ISSN code:
Proceedings title:
Proceedings of 2011 IFSA World Vongress - AFSS INternational Conference
Proceedings:
Mezinárodní
Publisher name:
Neuveden
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
World Congress of International Fuzzy Systems Association 2011 and Asia Fuzzy Systems Society International Conference 2011
Místo konání konference:
Surabya
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy transform; Fourier transforms; translation-invariant transformation; translation-covariant
Annotation in original language:
In many practical situations, we are interested in the dependencies that do not change with time, i.e., that do not change when we change the origin of the time axis. The corresponding translation-invariant transformations are easy to describe: they correspond to convolutions, or, equivalently, to fuzzy transforms. It turns out that if we relax the invariance condition and require only that the transformation be translation-covariant (i.e., that it appropriately changes under translation), we get exactly two classes of transformations: Fourier transforms and fuzzy transforms. This result explain why both transforms have been successfully used in data processing.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/11:A12012L3
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules