OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informačních a komunikačních technologií (45080)
Title:
Learning Styles in Adaptive Teaching
Citace
Šarmanová, J., Kostolányová, K. a Takács, O. Learning Styles in Adaptive Teaching.
In:
WOFEX 2011.
Ostrava: Fakulta elektrotechniky a informatiky, VŠB ? Technická univerzita Ostrava, 2011. Fakulta elektrotechniky a informatiky, VŠB ? Technická univerzita Ostrava, 2011. s. 477-482. ISBN 978-80-248-2449-9.
Subtitle
Publication year:
2011
Obor:
Pedagogika a školství
Number of pages:
6
Page from:
477
Page to:
482
Form of publication:
ISBN code:
978-80-248-2449-9
ISSN code:
Proceedings title:
WOFEX 2011
Proceedings:
Mezinárodní
Publisher name:
Fakulta elektrotechniky a informatiky, VŠB ? Technická univerzita Ostrava
Place of publishing:
Ostrava
Country of Publication:
Název konference:
WOFEX 2011
Místo konání konference:
Ostrava
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
learning styles, e-learning, data mining analysis
Annotation in original language:
In adaptive e-learning we try to make learning more efficient by adapting the process of learning to students' individual needs. To make this adaptation possible, we need to know key students characteristics - his motivation, group learning preferences, sensual type and various learning styles. One of the easiest ways to measure these characteristics is to use questionnaires. New questionnaire was created because there was no questionnaire to measure all these characteristics at once. This questionnaire was filled by 500 students from different fields of study. These results were analyzed using clustering, decision tree and principal component analysis. Several interesting dependencies between students' properties were discovered using this analysis.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17450/11:A12012GK
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules