OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
The Use of Higher-Order F-transform in Time Series Analysis
Citace
Novák, V., Perfiljeva, I. a Pavliska, V. The Use of Higher-Order F-transform in Time Series Analysis.
In:
Proceedings of 2011 IFSA World Vongress - AFSS INternational Conference.
s. 2211-2216. ISBN 978-602-99359-0-5.
Subtitle
Publication year:
2011
Obor:
Obecná matematika
Number of pages:
6
Page from:
2211
Page to:
2216
Form of publication:
ISBN code:
978-602-99359-0-5
ISSN code:
Proceedings title:
Proceedings of 2011 IFSA World Vongress - AFSS INternational Conference
Proceedings:
Mezinárodní
Publisher name:
Neuveden
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
World Congress of International Fuzzy Systems Association 2011 and Asia Fuzzy Systems Society International Conference 2011
Conference venue:
Surabya
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy transform; evaluative linguistic expressions; time series
Annotation in original language:
In this paper, higher-order fuzzy transform is presented and its application in the analysis and forecasting of time series is demonstrated. The use of F$^m$-transform in the time series analysis is motivated by its better approximation properties and smoother results. In our case, we applied $F^1$-transform for estimation of smoother trend-cycle and its slope. By combining the latter and tools based on the formal theory of evaluative linguistic expressions, we are able to generate automatically linguistic evaluation of the trend of time series in various time slots.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/11:A120122X
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules