OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Forecasting seasonal time series with computational intelligence: contribution of a combination of distinct methods.
Citace
Štěpnička, M., Peralta Donate, J., Cortez, P., Vavříčková, L. a Gutierrez, G. Forecasting seasonal time series with computational intelligence: contribution of a combination of distinct methods..
In:
Proc. EUSFLAT-LFA 2011.
Atlantis Press, 2011. s. 464-471. ISBN 978-90-78677-00-0.
Subtitle
Publication year:
2011
Obor:
Obecná matematika
Number of pages:
7
Page from:
464
Page to:
471
Form of publication:
ISBN code:
978-90-78677-00-0
ISSN code:
Proceedings title:
Proc. EUSFLAT-LFA 2011
Proceedings:
Mezinárodní
Publisher name:
Atlantis Press
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
EUSFLAT 2011
Místo konání konference:
Aix-Les-Bains
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Time series; Computational intelligence; Neural networks; Support vector machine; Fuzzy rules; Genetic algorithm
Annotation in original language:
Accurate time series forecasting are important for displaying the manner in which the past continues to affect the future and for planning our day to day activities. In recent years, a large literature has evolved on the use of computational intelligence in many forecasting applications. In this paper, several computational intelligence techniques (genetic algorithms, neural networks, support vector machine, fuzzy rules) are combined in a distinct way to forecast a set of referenced time series. Forecasting performance is compared to the a standard and method frequently used in practice.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/11:A120121I
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules