OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Optimizatinon of training sets for Hebbian-learningbased classifiers
Citace
Kocian, V., Volná, E., Janošek, M. a Kotyrba, M. Optimizatinon of training sets for Hebbian-learningbased classifiers.
In:
Mendel 2011.
Brno: Brno Univerzity of Technology, 2011. Brno Univerzity of Technology, 2011. s. 185-190. ISBN 978-80-214-4302-0.
Subtitle
Publication year:
2011
Obor:
Informatika
Number of pages:
6
Page from:
185
Page to:
190
Form of publication:
ISBN code:
978-80-214-4302-0
ISSN code:
Proceedings title:
Mendel 2011
Proceedings:
Mezinárodní
Publisher name:
Brno Univerzity of Technology
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
17th International Conference on Soft computing Mendel 2011
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Artificial neural network, training set, data Neural networks, Hebbian learning, irrelevant items, patterns optimization, pattern preprocessing
Annotation in original language:
The article deals with possibilities of optimization of classifiers based on neural networks which use Hebbian learning mechanism. The experimental study was conducted. The study shows, that badly designed learning patterns can prevent the network from learning under certain circumstances. The new term of irrelevant items of input vectors has been introduced in the article. Also we have introduced a optimization method. This method helps to avoid problems caused by so-called irrelevant items of input vectors and thus makes the learning algorithm more robust. The method lays off the self classifying algorithm. Thanks to the fact it is very easy to equip any arbitrary algorithm with it.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/11:A12011XZ
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules