OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Data extractionfrom sound waves towards neural network trainig set
Citace
Volná, E., Jarušek, R., Kotyrba, M., Janošek, M. a Kocian, V. Data extractionfrom sound waves towards neural network trainig set.
In:
Mendel 2011.
Brno: Brno Univerzity of Technology, 2011. Brno Univerzity of Technology, 2011. s. 177-184. ISBN 978-80-214-4302-0.
Subtitle
Publication year:
2011
Obor:
Informatika
Number of pages:
8
Page from:
177
Page to:
184
Form of publication:
ISBN code:
978-80-214-4302-0
ISSN code:
Proceedings title:
Mendel 2011
Proceedings:
Mezinárodní
Publisher name:
Brno Univerzity of Technology
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
17th International Conference on Soft computing Mendel 2011
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Artificial neural network, training set, data extraction, sound waves
Annotation in original language:
We present the proposed method that is based on neural networks in this paper. The neural network identifies a distance between an active transmitter and a receiver on the basis of sound pulses transmitted from transmitters in the defined domain. Consequently, another neural network uses obtained distances between transmitters and a receiver as its inputs to determine an actual position of the receiver in space. To solve data extraction from sound waves, we propose a new structure of training set corresponding to its original structure that means it is used to separate all difficult recognizing patterns from the training data set, therefore the main emphasis of this paper is focused on the fact, how to properly design training set for given neural networks.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/11:A12011XY
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules