OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Pattern recognition and system adaptation
Citace
Janošek, M., Kocian, V., Kotyrba, M. a Volná, E. Pattern recognition and system adaptation.
In:
Pattern recognition and system adaptation.
STU Bratislava, 2011. s. 1217-1226. ISBN 978-80-89313-51-8.
Subtitle
Publication year:
2011
Obor:
Informatika
Number of pages:
10
Page from:
1217
Page to:
1226
Form of publication:
ISBN code:
978-80-89313-51-8
ISSN code:
Proceedings title:
Pattern recognition and system adaptation
Proceedings:
Mezinárodní
Publisher name:
STU Bratislava
Place of publishing:
Neuveden
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
10th International Conference on Applied Mathematics, Aplimat 2011
Místo konání konference:
Bratislava
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
Pattern recognition, adaptation, prediction, neural networks, relative model, absolute model
Annotation in original language:
In this paper we would like to introduce the pattern recognition approach based on neural networks. Patterns are an effective way to describe system?s behaviours because we do not need to cover it every moment but we only search for certain patterns that appear from time to time. There are many ways how to recognize a pattern. In this study we use neural networks to do the job. Based on the pattern we recognize, it is possible to expect system's behaviour and adapt our acting desired way. There are many problems related to our research so in this paper we will concentrate on pattern recognition part mainly and present our current pattern recognition utility written in Java language and based on neural networks.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/11:A11010RR
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules