OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Relation Equations in Semilinear Spaces
Citace
Perfiljeva, I. Fuzzy Relation Equations in Semilinear Spaces.
In:
Communications in Computer and Information Science.
Berlin: Springer-Verlag, 2010. Springer-Verlag, 2010. s. 545-552. ISBN 3-642-14054-8.
Subtitle
Publication year:
2010
Obor:
Obecná matematika
Number of pages:
8
Page from:
545
Page to:
552
Form of publication:
ISBN code:
3-642-14054-8
ISSN code:
Proceedings title:
Communications in Computer and Information Science
Proceedings:
Mezinárodní
Publisher name:
Springer-Verlag
Place of publishing:
Berlin
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Inform.Processing and Management of Uncert. in Knowledge-Based Systems - IPMU 2010
Místo konání konference:
Dortmund
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Semilinear space, Residuated lattice, System of fuzzy relation equations, Fixed point
Annotation in original language:
We introduce a notion of an idempotent semilinear space and consider two systems of linear-like equations. These systems are equivalent to systems of fuzzy relation equations with sup-* and inf-> compositions. We show that the theory of Galois connections can be successfully used in characterizing whether these systems are solvable and, if so, finding their solutions sets.
Annotation in english language:
We introduce a notion of an idempotent semilinear space and consider two systems of linear-like equations. These systems are equivalent to systems of fuzzy relation equations with sup-* and inf-> compositions. We show that the theory of Galois connections can be successfully used in characterizing whether these systems are solvable and, if so, finding their solutions sets.
References
Reference
R01:
RIV/61988987:17610/10:A1100ZTJ
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules