OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Cellular neural networks for image processing tasks
Citace
Volná, E. Cellular neural networks for image processing tasks.
In:
Mendel 2010.
Brno: Brno Univerzity of Technology, 2010. Brno Univerzity of Technology, 2010. s. 274-279. ISBN 978-80-214-4120-0.
Subtitle
Publication year:
2010
Obor:
Informatika
Number of pages:
6
Page from:
274
Page to:
279
Form of publication:
ISBN code:
978-80-214-4120-0
ISSN code:
Proceedings title:
Mendel 2010
Proceedings:
Mezinárodní
Publisher name:
Brno Univerzity of Technology
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
16th International Conference on Soft computing Mendel 2010
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000288144100042
EID:
Key words in English:
Cellular neural networks, image processing.
Annotation in original language:
Cellular neural networks (CNNs) are similar to artificial neural networks (ANNs) in that they are composed of many distributed processing elements, called ?cells?, which are connected in a network. CNNs were designed to operate in a two-dimensional grid, where each processing element (cell) is connected to neighboring cells in the grid. CNNs have been shown to be an adept at image processing tasks. Specifically, CNN cells maintain a state which evolves through time due to differential equations dependent on the cell's inputs and feedback. This article introduces software for graphics processing units (GPUs) by abstracting the hardware as arrays of configurable CNNs cells. Introducing an efficient CNN-based abstraction of GPU computation should encourage the study of massively parallel computation using tools and methods of dynamic systems theory and abstract automata theory.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/10:A1100YDG
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules