OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Adaptive Population-Based Algorithm for Global Optimization
Citace
Tvrdík, J., Křivý, I. a Mišík, L. Adaptive Population-Based Algorithm for Global Optimization.
In:
Proc. of COMPSTAT2006.
Heidelberg: Physica Verlag, 2006. Physica Verlag, 2006. s. 1363-1370. ISBN 3-7908-1708-2.
Subtitle
Publication year:
2006
Obor:
Aplikovaná statistika, operační výzkum
Number of pages:
8
Page from:
1363
Page to:
1370
Form of publication:
ISBN code:
3-7908-1708-2
ISSN code:
Proceedings title:
Proc. of COMPSTAT2006
Proceedings:
Mezinárodní
Publisher name:
Physica Verlag
Place of publishing:
Heidelberg
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
COMPSTAT 2006
Místo konání konference:
Rome
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
global optimization; stochastic algorithms; nonlinear regression
Annotation in original language:
This paper describes an adaptive stochastic algorithm for the global optimization. The algorithm is based on the competition of heuristics for local search. The experimental results obtained when applying the algorithm to the estimation of nonlinear-regression parameters of NIST tasks are presented and compared with the results of other algorithms. The proposed algorithm proved to be more reliable at an acceptable time consumption.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/06:A0900QE8
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules