OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Exponential Crossover in Competive Differential Evolution
Citace
Tvrdík, J. Exponential Crossover in Competive Differential Evolution.
In:
MENDEL 2008, 14th International Conference on Soft Computing.
Brno: University of Technology, 2008. University of Technology, 2008. s. 44-49. ISBN 978-80-214-3675-6.
Subtitle
Publication year:
2008
Obor:
Aplikovaná statistika, operační výzkum
Number of pages:
6
Page from:
44
Page to:
49
Form of publication:
ISBN code:
978-80-214-3675-6
ISSN code:
Proceedings title:
MENDEL 2008, 14th International Conference on Soft Computing
Proceedings:
Mezinárodní
Publisher name:
University of Technology
Place of publishing:
Brno
Country of Publication:
Sborník vydaný v ČR
Název konference:
MENDEL 2008
Místo konání konference:
Brno
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
000265681300009
EID:
Key words in English:
global optimization; differential evolution; control parameters; competitive adaption; exponential crossover; numerical comparison
Annotation in original language:
Two types of crossover in differential evolution algorithms are concerned, both in standard and adaptive variants of differential evolution. Proper choice of mutation probability in exponential crossover is proposed and implemented in respective variants of differential evolution in tests. The impact of crossover type and the use of random localization in mutation were examined in benchmark tests. New variant of self-adaptive differential evolution with both type of crossover and competitive setting of control parameters outperformed the others. This variant is suggested for the real-world problems, where we need an adaptive algorithm applicable without time-wasting parameter tuning.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/08:A1000PRX
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules