OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Fuzzy Transform for Practical Problems
Citace
Štěpnička, M. Fuzzy Transform for Practical Problems.
In:
Inteligentní systémy pro praxi.
Ostrava: AD&M, 2007. AD&M, 2007. s. 39-40. ISBN 978-80-239-8245-9.
Subtitle
Publication year:
2007
Obor:
Obecná matematika
Number of pages:
2
Page from:
39
Page to:
40
Form of publication:
ISBN code:
978-80-239-8245-9
ISSN code:
Proceedings title:
Inteligentní systémy pro praxi
Proceedings:
Publisher name:
AD&M
Place of publishing:
Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
Inteligentní systémy pro praxi
Conference venue:
Lázně Bohdaneč
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
Fuzzy approximation; fuzzy tranform; fuzzy interpolation; fuzzy control
Annotation in original language:
Fuzzy transform is a method which belongs to fuzzy approximation models. Basically, it is shown to be a powerful approximation tool preserving features typical for fuzzy models. Its robustness, computational simplicity, noise removing ability and other properties made possible to successfully applied the method to numerical solution of differential equations or image processing. Finally, the method can significantly influence fuzzy control strategy, especially an identification process. This fact is demonstrated on a real fuzzy control application dealing with an autonomous robot.
Annotation in english language:
Fuzzy transform is a method which belongs to fuzzy approximation models. Basically, it is shown to be a powerful approximation tool preserving features typical for fuzzy models. Its robustness, computational simplicity, noise removing ability and other properties made possible to successfully applied the method to numerical solution of differential equations or image processing. Finally, the method can significantly influence fuzzy control strategy, especially an identification process. This fact is demonstrated on a real fuzzy control application dealing with an autonomous robot.
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules