OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Competitive differential evolution and genetic algorithm in GA-DS Toolbox
Citace
Tvrdík, J. Competitive differential evolution and genetic algorithm in GA-DS Toolbox.
In:
International conferenceTechnical Computing Prague 2006.
Praha: Humusoft, 2006. Humusoft, 2006. s. 99-99. ISBN 80-7080-616-8.
Subtitle
Publication year:
2006
Obor:
Aplikovaná statistika, operační výzkum
Number of pages:
1
Page from:
99
Page to:
99
Form of publication:
ISBN code:
80-7080-616-8
ISSN code:
Proceedings title:
International conferenceTechnical Computing Prague 2006
Proceedings:
Mezinárodní
Publisher name:
Humusoft
Place of publishing:
Praha
Country of Publication:
Sborník vydaný v ČR
Název konference:
Technical Computing Prague 2006
Místo konání konference:
Praha
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
global optimization; differential evolution; self-adaptive control parameters; genetic algorithm, numerical comparison; MATLAB
Annotation in original language:
Differential evolution (DE) algorithm with competitive control-parameter setting is described. This algorithm is compared in benchmark tests with genetic algorithm implemented in Matlab GA-DS toilbox. The results proved the significantly better performance of the self-adaptive DE in the benchmark tests.
Annotation in english language:
Differential evolution (DE) algorithm with competitive control-parameter setting is described. This algorithm is compared in benchmark tests with genetic algorithm implemented in Matlab GA-DS toilbox. The results proved the significantly better performance of the self-adaptive DE in the benchmark tests.
References
Reference
R01:
RIV/61988987:17610/06:00000207
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules