OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Automated proofs for composition-based fuzzy relational notions
Citace
Daňková, M. a Běhounek, L. Automated proofs for composition-based fuzzy relational notions.
In:
Proceedings of Logic of Soft Computing 5 & 5th workshop of the ERCIM working group of Soft Computing.
s. 96-102.
Subtitle
Publication year:
2006
Obor:
Obecná matematika
Number of pages:
7
Page from:
96
Page to:
102
Form of publication:
ISBN code:
ISSN code:
Proceedings title:
Proceedings of Logic of Soft Computing 5 & 5th workshop of the ERCIM working group of Soft Computing
Proceedings:
Publisher name:
Place of publishing:
Malaga
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Logic of Soft Computing 5 & 5th workshop of the ERCIM working group of Soft Computing
Místo konání konference:
Malaga, Spani
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Fuzzy relations; Fuzzy class theory
Annotation in original language:
In this contribution, we use the theory of formal interpretations to unify a significant class of notions related to fuzzy sets and fuzzy relations by means of compositions. This trick allows us to simplify the proofs of properties of the composition-related notions and leads to its automatization by a computer.
Annotation in english language:
In this contribution, we use the theory of formal interpretations to unify a significant class of notions related to fuzzy sets and fuzzy relations by means of compositions. This trick allows us to simplify the proofs of properties of the composition-related notions and leads to its automatization by a computer.
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules