OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
A note on ordinal sums of t-norms and t-subnorms on bounded lattices
Citace
Saminger, S., Klement, E. a Mesiar, R. A note on ordinal sums of t-norms and t-subnorms on bounded lattices.
In:
Information Processing and Management of Uncertainty in Knowledge-based Systems.
Paris: Editions E.D.K., 2006. Editions E.D.K., 2006. s. 664-670. ISBN 2-84254-112-X.
Subtitle
Publication year:
2006
Obor:
Obecná matematika
Number of pages:
7
Page from:
664
Page to:
670
Form of publication:
ISBN code:
2-84254-112-X
ISSN code:
Proceedings title:
Information Processing and Management of Uncertainty in Knowledge-based Systems
Proceedings:
Mezinárodní
Publisher name:
Editions E.D.K.
Place of publishing:
Paris
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IPMU'2006
Místo konání konference:
Paris
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
triangular norm; triangular subnorm; ordinal sum; bounded lattice
Annotation in original language:
Ordinal sum t-norms on bounded lattices are discussed. The summand carriers are assumed to be subintervals of the bounded lattice and the summand operations are triangular (sub)norms.
Annotation in english language:
Ordinal sum t-norms on bounded lattices are discussed. The summand carriers are assumed to be subintervals of the bounded lattice and the summand operations are triangular (sub)norms.
References
Reference
R01:
RIV/61988987:17610/06:00000216
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules