OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Robust Algorithm for Estimation of Parameters in Non-linear Regression Model
Citace
Tvrdík, J. Robust Algorithm for Estimation of Parameters in Non-linear Regression Model.
In:
International conferenceTechnical Computing Prague 2005.
Praha: Humusoft, 2005. Humusoft, 2005. s. 124-124. ISBN 80-7080-577-3.
Subtitle
Publication year:
2005
Obor:
Aplikovaná statistika, operační výzkum
Number of pages:
1
Page from:
124
Page to:
124
Form of publication:
ISBN code:
80-7080-577-3
ISSN code:
Proceedings title:
International conferenceTechnical Computing Prague 2005
Proceedings:
Mezinárodní
Publisher name:
Humusoft
Place of publishing:
Praha
Country of Publication:
Sborník vydaný v ČR
Název konference:
Technical Computing Prague 2005
Conference venue:
Praha
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
global optimization; stochastic algorithms; competing heuristics; non-linear regression; NIST datasets; MATLAB
Annotation in original language:
The paper deals with algorithms for estimation of non-linear regression parameters. Stochastic population-based algorithm with competition was implemented and compared with standard gradient algorithm commonly used for least-squares estimates. The results show that this stochastic algorithm found the global minimum in most tasks where gradient algorithm fails. Such population-based algorithms can be used as a tool for estimation of non-linear regression parameters, especially in tasks of higher difficulty level or in tasks when suitable starting values for gradient method are not available.
Annotation in english language:
The paper deals with algorithms for estimation of non-linear regression parameters. Stochastic population-based algorithm with competition was implemented and compared with standard gradient algorithm commonly used for least-squares estimates. The results show that this stochastic algorithm found the global minimum in most tasks where gradient algorithm fails. Such population-based algorithms can be used as a tool for estimation of non-linear regression parameters, especially in tasks of higher difficulty level or in tasks when suitable starting values for gradient method are not available.
References
Reference
R01:
RIV/61988987:17310/05:A1000DFK
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules