OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Laplacian-Guided Keypoint Selection for Efficient FuzzyTransform Approximation in Bayesian Networks
Citace
Mrógala, J. a Perfiljeva, I. Laplacian-Guided Keypoint Selection for Efficient FuzzyTransform Approximation in Bayesian Networks.
In:
14th Conference of the European Society for Fuzzy Logic and Technology: Book of Abstracts EUSFLAT 2025 2025-07-21 Riga.
Riga: University of Latvia, 2025. s. 87-87. ISBN 978-9934-556-79-1.
Subtitle
Publication year:
2025
Obor:
Number of pages:
1
Page from:
87
Page to:
87
Form of publication:
Elektronická verze
ISBN code:
978-9934-556-79-1
ISSN code:
Proceedings title:
Book of Abstracts EUSFLAT 2025
Proceedings:
Mezinárodní
Publisher name:
University of Latvia
Place of publishing:
Riga
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
14th Conference of the European Society for Fuzzy Logic and Technology
Conference venue:
Riga
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
Key words in English:
Fuzzy transform; Laplacian; Approximation; Bayesian networks
Annotation in original language:
This abstract presents a Laplacian-guided method for selecting optimal keypoints in fuzzy transform approximations, reducing computational complexity from O(n) to O(k) while preserving critical information for efficient Bayesian network training.
Annotation in english language:
This abstract presents a Laplacian-guided method for selecting optimal keypoints in fuzzy transform approximations, reducing computational complexity from O(n) to O(k) while preserving critical information for efficient Bayesian network training.
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules