OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Centrum klinických neurověd (11704)
Název:
Atherosclerotic Plaque Stability Prediction from Longitudinal Ultrasound Images
Citace
Kybic, J., PAKIZER, D., KOZEL, J., Michalčová, P., Charvát, F. a Školoudík, D. Atherosclerotic Plaque Stability Prediction from Longitudinal Ultrasound Images.
In:
15th International Workshop, MLMI 2024: Machine Learning in Medical Imaging I 2024-10-06 Marrakesh.
Cham: Springer, 2025. s. 124-132. ISBN 978-3-031-73284-3.
Podnázev
Rok vydání:
2025
Obor:
Počet stran:
9
Strana od:
124
Strana do:
132
Forma vydání:
Elektronická verze
Kód ISBN:
978-3-031-73284-3
Kód ISSN:
0302-9743
Název sborníku:
Machine Learning in Medical Imaging I
Sborník:
Mezinárodní
Název nakladatele:
Springer
Místo vydání:
Cham
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
15th International Workshop, MLMI 2024
Místo konání konference:
Marrakesh
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
001424557900013
EID:
2-s2.0-85208223317
Klíčová slova anglicky:
atherosclerosis; ultrasound; progression; risk factor; carotid artery; deep learning; biomedical image processing; regression analysis
Popis v původním jazyce:
We aim to predict the stability of carotid artery plaques from longitudinal ultrasound images. This is important since atherosclerosis is the primary cause of heart disease and stroke. Accurately predicting plaque stability would allow for more targeted follow-up and treatment, saving healthcare costs.We analyze data from over 400 patients followed for 3 years, exceeding the size of previous studies. We first localize the carotid artery and segment the plaque within the images. A self-supervised learning approach was used for plaque segmentation, leveraging the power of unlabeled data. The plaque stability predictor uses three image channels derived from the ultrasound image and its segmentation. As an auxiliary task, we predict the plaque width, which helps to prevent overfitting. The balance between the criteria is maintained automatically.Our estimate of the plaque width correlated well with expert measurements (p = 0.56). We confirmed that there is a relationship between the plaque ultrasound appearance in longitudinal images and their stability. However, the future width correlation and the plaque stability prediction performance remained modest (AUC = 0.61), similar to previous studies.
Popis v anglickém jazyce:
We aim to predict the stability of carotid artery plaques from longitudinal ultrasound images. This is important since atherosclerosis is the primary cause of heart disease and stroke. Accurately predicting plaque stability would allow for more targeted follow-up and treatment, saving healthcare costs.We analyze data from over 400 patients followed for 3 years, exceeding the size of previous studies. We first localize the carotid artery and segment the plaque within the images. A self-supervised learning approach was used for plaque segmentation, leveraging the power of unlabeled data. The plaque stability predictor uses three image channels derived from the ultrasound image and its segmentation. As an auxiliary task, we predict the plaque width, which helps to prevent overfitting. The balance between the criteria is maintained automatically.Our estimate of the plaque width correlated well with expert measurements (p = 0.56). We confirmed that there is a relationship between the plaque ultrasound appearance in longitudinal images and their stability. However, the future width correlation and the plaque stability prediction performance remained modest (AUC = 0.61), similar to previous studies.
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules