OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
kapitola v odborné knize (C)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
From Neural Networks to Fuzzy Modeling
Citace
Perfiljeva, I. a Novák, V. From Neural Networks to Fuzzy Modeling.
In:
Complex, Hypercomplex and Fuzzy-valued Neural Networks New perspectives and applications.
Podnázev
Rok vydání:
2025
Obor:
Forma vydání:
Kód ISBN:
Název knihy v originálním jazyce:
Complex, Hypercomplex and Fuzzy-valued Neural Networks New perspectives and applications
Název edice a číslo svazku:
Místo vydání:
Název nakladatele:
Označení vydání
(číslo vydání):
:
Vydáno:
Autor zdrojového dokumentu:
Počet stran:
Počet stran knihy:
Strana od:
Strana do:
Počet výtisků knihy:
EID:
Klíčová slova anglicky:
Neural networks, fuzzy natural logic, fuzzy transform, time series
Popis v původním jazyce:
This chapter focuses on the so-called model-driven approach to data analysis. This approach is closely related to the computations performed by neural networks since the latter follow a specific procedure for transforming the original data into a form well suited to solving the original, usually external, problem. The chapter is divided into two sections, in which we discuss two diferent types of dataembedded in continuous or discrete spaces. In Section 1.1, we analyze the data as continuous functions and discuss three options for representing them in feature space: according to a Cybenko-type approximation, a Kolmogorov-type representation, and an approximate representation using F-transform theory. In Section 2 1.2, we deal with time series data defined in the discrete-time domain. The feature extraction method is based on the composition of two successively applied models derived from the theories of F-transforms and fuzzy natural logic (FNL). We demonstrate the efectiveness of the proposed method in processing long time series.
Popis v anglickém jazyce:
This chapter focuses on the so-called model-driven approach to data analysis. This approach is closely related to the computations performed by neural networks since the latter follow a specific procedure for transforming the original data into a form well suited to solving the original, usually external, problem. The chapter is divided into two sections, in which we discuss two diferent types of dataembedded in continuous or discrete spaces. In Section 1.1, we analyze the data as continuous functions and discuss three options for representing them in feature space: according to a Cybenko-type approximation, a Kolmogorov-type representation, and an approximate representation using F-transform theory. In Section 2 1.2, we deal with time series data defined in the discrete-time domain. The feature extraction method is based on the composition of two successively applied models derived from the theories of F-transforms and fuzzy natural logic (FNL). We demonstrate the efectiveness of the proposed method in processing long time series.
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules