OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Katedra fyzické geografie a geoekologie (31600)
Název:
Numerical modeling of collapsed deep-seated gravitational slope deformations: insights from Velka Fatra Mts., Slovakia
Citace
Toločka, A. a Kapustová, V. Numerical modeling of collapsed deep-seated gravitational slope deformations: insights from Velka Fatra Mts., Slovakia.
In:
EGU General Assembly 2024: EGU General Assembly 2024 Programme 2024-04-14 Vienna.
Podnázev
Rok vydání:
2024
Obor:
Počet stran:
Strana od:
neuvedeno
Strana do:
neuvedeno
Forma vydání:
Tištená verze
Kód ISBN:
Kód ISSN:
Název sborníku:
EGU General Assembly 2024 Programme
Sborník:
Mezinárodní
Název nakladatele:
neuvedeno
Místo vydání:
neuvedeno
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
EGU General Assembly 2024
Místo konání konference:
Vienna
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
DSGSD; numerical modeling; back-analysis; Carpathians; Velka Fatra
Popis v původním jazyce:
Large-scale deep-seated gravitational slope deformations (DSGSDs) are common but not highly investigated phenomena around the world. In the Carpathian Mountains, they played an important role during the Quaternary evolution of typical core mountain ridges formed by crystalline basement and surrounded by Mesozoic deposits. There is evidence that most of the biggest catastrophic rock slope failures (collapses) in the Carpathian Mountains appeared exactly in areas that are affected by DSGSDs. Two DSGSD-affected slopes (Brdo and Žlebiny) on the northeast side of the Velka Fatra Mountains (Western Carpathians, Slovakia) have been subjected to a detailed investigation involving geomorphic mapping, remote sensing analysis, structural data collection, and numerical modeling. To improve our understanding of these gravity-induced processes, we performed a back-analysis of collapsed DSGSDs through a 4-stage continuum-based finite-element model set up using the RS2 code (Rocscience). We used geomechanical rock data from fieldwork and previous laboratory tests, as well as interpretation in RSData software (Rocscience), to obtain the major rock mass parameters for the models. Results show that these DSGSDs are strongly predisposed by regional geological structures given by the intersection of bedding planes, joint sets, and thrust faults. The numerical modeling approach and performed back-analysis have enabled a better view of the development of these deep-seated slope failures in the Velka Fatra Mountains. It suggests a high diversity of mechanisms leading to the origin of these DSGSD cases. The main causal factors influencing their development have been bedrock structure, the lithological composition of dolomite and limestone layers, thrust faulting, and, finally, deep weathering of the rock mass. Both cases have deep basal shear zones and a few series of gravitational faults associated with complex joint sets. According to the numerical modeling results, Brdo DSGSD shows a typical scenario of a symmetrical sackung surrounded by shallow landslide areas, while Žlebiny DSGSD developed into a one-sided deep-seated slide with a few large-scale tilted rock blocks.
Popis v anglickém jazyce:
Large-scale deep-seated gravitational slope deformations (DSGSDs) are common but not highly investigated phenomena around the world. In the Carpathian Mountains, they played an important role during the Quaternary evolution of typical core mountain ridges formed by crystalline basement and surrounded by Mesozoic deposits. There is evidence that most of the biggest catastrophic rock slope failures (collapses) in the Carpathian Mountains appeared exactly in areas that are affected by DSGSDs. Two DSGSD-affected slopes (Brdo and Žlebiny) on the northeast side of the Velka Fatra Mountains (Western Carpathians, Slovakia) have been subjected to a detailed investigation involving geomorphic mapping, remote sensing analysis, structural data collection, and numerical modeling. To improve our understanding of these gravity-induced processes, we performed a back-analysis of collapsed DSGSDs through a 4-stage continuum-based finite-element model set up using the RS2 code (Rocscience). We used geomechanical rock data from fieldwork and previous laboratory tests, as well as interpretation in RSData software (Rocscience), to obtain the major rock mass parameters for the models. Results show that these DSGSDs are strongly predisposed by regional geological structures given by the intersection of bedding planes, joint sets, and thrust faults. The numerical modeling approach and performed back-analysis have enabled a better view of the development of these deep-seated slope failures in the Velka Fatra Mountains. It suggests a high diversity of mechanisms leading to the origin of these DSGSD cases. The main causal factors influencing their development have been bedrock structure, the lithological composition of dolomite and limestone layers, thrust faulting, and, finally, deep weathering of the rock mass. Both cases have deep basal shear zones and a few series of gravitational faults associated with complex joint sets. According to the numerical modeling results, Brdo DSGSD shows a typical scenario of a symmetrical sackung surrounded by shallow landslide areas, while Žlebiny DSGSD developed into a one-sided deep-seated slide with a few large-scale tilted rock blocks.
Seznam ohlasů
Ohlas
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules