OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
How to Verify Validity of Non-trivial Logical Syllogisms
Citace
Murinová, P. a Fiala, K. How to Verify Validity of Non-trivial Logical Syllogisms.
In:
Intelligent and Fuzzy Systems (INFUS 2024): Lecture Notes in Networks and Systems Series 2024-07-16 Canakkale.
Cham: Springer, 2024. s. 499-506. ISBN 978-3-031-67191-3.
Subtitle
Publication year:
2024
Obor:
Number of pages:
8
Page from:
499
Page to:
506
Form of publication:
Tištená verze
ISBN code:
978-3-031-67191-3
ISSN code:
2367-3370
Proceedings title:
Lecture Notes in Networks and Systems Series
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
Intelligent and Fuzzy Systems (INFUS 2024)
Místo konání konference:
Canakkale
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85203126486
Key words in English:
Peterson's syllogisms; Peterson's rules; Peterson's square of opposition; Peterson's rules based on grades
Annotation in original language:
In this publication we will focus on the presentation of several methods by which we are able to verify the validity of generalized Peterson syllogisms. We will focus on a special group of so-called non-trivial syllogisms when a generalized intermediate quantifier is considered in both premises, e.g. Most, Several, Many, etc.
Annotation in english language:
In this publication we will focus on the presentation of several methods by which we are able to verify the validity of generalized Peterson syllogisms. We will focus on a special group of so-called non-trivial syllogisms when a generalized intermediate quantifier is considered in both premises, e.g. Most, Several, Many, etc.
References
Reference
R01:
RIV/61988987:17610/24:A2502NVL
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules