OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
stať ve sborníku (D)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Groupoids in categories of fuzzy topological spaces with continuous fuzzy relations
Citace
Močkoř, J. Groupoids in categories of fuzzy topological spaces with continuous fuzzy relations.
In:
IPMU2024: 20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems: Information Processing and Management of Uncertainty in Knowledge-Based Systems 2024-07-22 Lisabon.
Cham: Springer, 2024. s. 12-21. ISBN 978-3-031-74003-9.
Podnázev
Rok vydání:
2024
Obor:
Obecná matematika
Počet stran:
10
Strana od:
12
Strana do:
21
Forma vydání:
Elektronická verze
Kód ISBN:
978-3-031-74003-9
Kód ISSN:
Název sborníku:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Sborník:
Mezinárodní
Název nakladatele:
Springer
Místo vydání:
Cham
Stát vydání:
Sborník vydaný v zahraničí
Název konference:
IPMU2024: 20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems
Místo konání konference:
Lisabon
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků akce:
Celosvětová akce
Kód UT WoS:
EID:
Klíčová slova anglicky:
Chang L-fuzzy topological spaces; continuous fuzzy relation; fuzzy product in a category; fuzzy groupoid in a category
Popis v původním jazyce:
The notion of a continuous MV-valued fuzzy relation in Chang topological fuzzy spaces is defined, and the category Top of these spaces with continuous fuzzy relations as morphisms is presented. Two special subcategories of Top are presented, using the category of approximation spaces and the category of fuzzy partitions, both with fuzzy relations as morphisms. The concept of a fuzzy groupoid is defined for objects of these categories using the notion of fuzzy products in these subcategories.
Popis v anglickém jazyce:
The notion of a continuous $MV$-valued fuzzy relation in Chang topological fuzzy spaces is defined, and the category $\bf Top$ of these spaces with continuous fuzzy relations as morphisms is presented. Two special subcategories of $\bf Top$ are presented, using the category of approximation spaces and the category of fuzzy partitions, both with fuzzy relations as morphisms. The concept of a fuzzy groupoid is defined for objects of these categories using the notion of fuzzy products in these subcategories.
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17610/24:A2502NIG
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules