OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Multi-scale Dimensionality Reduction with F-Transforms in Time Series Analysis
Citace
Perfiljeva, I. Multi-scale Dimensionality Reduction with F-Transforms in Time Series Analysis.
In:
INFUS 2023.: Intelligent and Fuzzy Systems. INFUS 2023. Lecture Notes in Networks and Systems, vol 758 2023-08-22 Istanbul.
Switzerland: Springer Cham, 2023. s. 22-34. ISBN 978-3-031-39773-8.
Subtitle
Publication year:
2023
Obor:
Obecná matematika
Number of pages:
13
Page from:
22
Page to:
34
Form of publication:
Tištená verze
ISBN code:
978-3-031-39773-8
ISSN code:
Proceedings title:
Intelligent and Fuzzy Systems. INFUS 2023. Lecture Notes in Networks and Systems, vol 758
Proceedings:
Mezinárodní
Publisher name:
Springer Cham
Place of publishing:
Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
INFUS 2023.
Místo konání konference:
Istanbul
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85172019016
Key words in English:
Multi-scale representation; Keypoint; Fuzzy partition; Fuzzy transform
Annotation in original language:
Our first contribution to this topic is as follows: we show that in the case of large datasets, dimensionality reduction should be divided into several subtasks, determined by the choice of keypoints as centers corresponding to clusters. For specific time series datasets, we connect keypoints to centers that maximize the values of the non-local Laplacians. Moreover, we propose to use the scale space approach and consider a scale-dependent sequence of non-local Laplacians. As a second contribution, we use non-traditional kernels obtained from the theory of F-transforms [11]. This allows to simplify the scaling and selection of keypoints, reduce their number and increase reliability. We also propose a new keypoint descriptor and test it against high volatility financial time series.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/23:A2402N58
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules