OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Weighted Fuzzy Rules Based on Implicational Quantifiers
Citace
Daňková, M. Weighted Fuzzy Rules Based on Implicational Quantifiers.
In:
The International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM): IUKM 2023, LNAI 14375 2023-11-02 Kanazawa.
"Neuveden": Springer, 2023. s. 27-36. ISBN 978-3-031-46775-2.
Subtitle
Publication year:
2023
Obor:
Obecná matematika
Number of pages:
10
Page from:
27
Page to:
36
Form of publication:
Elektronická verze
ISBN code:
978-3-031-46775-2
ISSN code:
1611-3349
Proceedings title:
IUKM 2023, LNAI 14375
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
"Neuveden"
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
The International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM)
Místo konání konference:
Kanazawa
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85177242067
Key words in English:
Implicational Quantifiers, IF--THEN Rules, Fuzzy Logic, Weighted Fuzzy Rules
Annotation in original language:
In this paper, we explore the use of General Unary Hypotheses Automaton (GUHA) quantifiers, explicitly implicational quantifiers, for analyzing specific relational dependencies. We discuss their suitability in fuzzy modeling and demonstrate their integration with appropriate fuzzy rules to create a new class of weighted fuzzy rules. This study contributes to the advancement of fuzzy modeling and offers a framework for further research and practical applications.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/23:A2402LW6
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules