OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Controlled Refresh of the Population in Differential Evolution for Real-World Problems
Citace
Bujok, P., Lacko, M. a Kolenovský, P. Controlled Refresh of the Population in Differential Evolution for Real-World Problems.
In:
22th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2023): Artificial Intelligence and Soft Computing 2023-06-18 Zakopane, Polsko.
Cham, Switzerland: Springer, 2023. s. 352-362. ISBN 978-3-031-42504-2.
Subtitle
Publication year:
2023
Obor:
Informatika
Number of pages:
10
Page from:
352
Page to:
362
Form of publication:
Elektronická verze
ISBN code:
978-3-031-42504-2
ISSN code:
Proceedings title:
Artificial Intelligence and Soft Computing
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham, Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
22th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2023)
Místo konání konference:
Zakopane, Polsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85172418790
Key words in English:
Differential evolution; Diversity; Experiment; Real-world problems; Statistical comparison
Annotation in original language:
In this paper, a new variant of the Differential Evolution (DE) algorithm is proposed to control the diversity of individuals in the population. The proposed approach is based on the failure of individuals in successive generations. The positions of the unsuccessful individuals are refreshed by employing the position parameters of the successful individuals from the population. Two control parameters of the proposed approach are studied to eliminate inappropriate settings. These nine variants of newly designed DE variants are compared with the classic DE algorithm when solving the set of real-world problems CEC 2011. The results show a very promising ability to solve real-world problems when the DE uses the proposed mechanism with the appropriate settings.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/23:A2402LFR
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules