OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Intersection over Union with smoothing for bounding box regression
Citace
Števuliáková, P. a Hurtík, P. Intersection over Union with smoothing for bounding box regression.
In:
IWANN 2023: Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135 2023-06-19 Ponta Delgada, Portugal.
Springer, Cham, 2023. s. 206-216. ISBN 978-3-031-43077-0.
Subtitle
Publication year:
2023
Obor:
Informatika
Number of pages:
11
Page from:
206
Page to:
216
Form of publication:
Elektronická verze
ISBN code:
978-3-031-43077-0
ISSN code:
03029743
Proceedings title:
Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135
Proceedings:
Mezinárodní
Publisher name:
Springer, Cham
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
IWANN 2023
Místo konání konference:
Ponta Delgada, Portugal
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
001155317100017
EID:
2-s2.0-85174536799
Key words in English:
Bounding box regression, Intersection over Union, Object detection, Noisy labels
Annotation in original language:
We focus on the construction of a loss function for the bounding box regression. The Intersection over Union (IoU) metric is improved to converge faster, to make the surface of the loss function smooth and continuous over the whole searched space, and to reach a more precise approximation of the labels. The main principle is adding a smoothing part to the original IoU, where the smoothing part is given by a linear space with values that increases from the ground truth bounding box to the border of the input image, and thus covers the whole spatial search space. We show the motivation and formalism behind this loss function and experimentally prove that it outperforms IoU, DIoU, CIoU, and SIoU by a large margin. We experimentally show that the proposed loss function is robust with respect to the noise in the dimension of ground truth bounding boxes. The reference implementation is available at gitlab.com/irafm-ai/smoothing-iou.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/23:A2402KWI
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules