OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Powerset Operators in Categories with Fuzzy Relations Defined by Monads
Citace
Močkoř, J. Powerset Operators in Categories with Fuzzy Relations Defined by Monads.
In:
NAFIPS 2020: Fuzzy Information Processing 2020. NAFIPS 2020. Advances in Intelligent Systems and Computing 2020 Redmond, USA.
Cham: Springer, 2022. ISBN 978-3-030-81560-8.
Subtitle
Publication year:
2022
Obor:
Obecná matematika
Number of pages:
11
Page from:
neuvedeno
Page to:
neuvedeno
Form of publication:
Tištená verze
ISBN code:
978-3-030-81560-8
ISSN code:
Proceedings title:
Fuzzy Information Processing 2020. NAFIPS 2020. Advances in Intelligent Systems and Computing
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
NAFIPS 2020
Místo konání konference:
Redmond, USA
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000770426900001
EID:
Key words in English:
Powerset operators; momads; Kleisli category; F-transform
Annotation in original language:
Powerset operators in categories with relations defined by monads as morphisms are investigated. Such categories are, in fact, Kleisli categories of monads in clone form. Examples of such categories used in lattice-valued F-transform theory are presented. It is proven that for arbitrary powerset operator P in a category K with a monad T there exists a powerset operator (P) over tilde of the Kleisli category K-T, which extends the original powerset operator of the category K.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/22:A2302IRT
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules