OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Using Word2Vec for news articles recommendations: Considering evaluation options for hyperparameter optimization and different input options
Citace
Walek, B. a Müller, P. Using Word2Vec for news articles recommendations: Considering evaluation options for hyperparameter optimization and different input options.
In:
2022 IEEE 16th International Scientific Conference on Informatics 2022-11-23 Poprad.
Subtitle
Publication year:
2022
Obor:
Number of pages:
10
Page from:
neuvedeno
Page to:
neuvedeno
Form of publication:
Elektronická verze
ISBN code:
neuvedeno
ISSN code:
Proceedings title:
2022 IEEE 16th International Scientific Conference on Informatics
Proceedings:
Mezinárodní
Publisher name:
neuvedeno
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
Místo konání konference:
Poprad
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Word2Vec; document similarity; word embeddings, analogies tests, recommender systems; natural language processing; Doc2Vec; TF-IDF; news articles recommender system; information retrieval; unsupervised learning; parameter search
Annotation in original language:
Evaluation of unsupervised and semi-supervised learning methods, especially in the field of information retrieval and recommender systems is a problematic and resource-intensive task. Often, there is no way to evaluate the used machine learning model until user testing is performed. We investigated hyperparameter optimization options of Gensim’s Word2Vec implementation by evaluating model performance on word analogies and word pairs tests and statistics of out-of-vocabulary ratio. These automatic and task-independent offline (pre )evaluations techniques could provide a simple way to reduce the set of final model variants used for resource-demanding user testing or hybrid recommender models, thus we investigated whether those tests were useful for the accuracy of our final task of providing similar articles to a chosen article. We also consider options of using Wikipedia articles for the model training input or pre-trained FastText model.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules