OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Non-statistical methods for analysis, forecasting and mining time series
Citace
Novák, V. a Perfiljeva, I. Non-statistical methods for analysis, forecasting and mining time series.
In:
ITISE 2021: Contribution to Statistics 2021-07-19 Gran Canaria.
Berlin: Springer, 2022. s. 65-78. ISBN 978-3-031-14199-7.
Subtitle
Publication year:
2022
Obor:
Obecná matematika
Number of pages:
14
Page from:
65
Page to:
78
Form of publication:
Tištená verze
ISBN code:
978-3-031-14199-7
ISSN code:
Proceedings title:
Contribution to Statistics
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Berlin
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
ITISE 2021
Místo konání konference:
Gran Canaria
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Time series; Fuzzy transform; Evaluative linguistic expressions; Fuzzy natural logic; Mining information from time series
Annotation in original language:
This is an overview paper, in which we briefly present results obtained 4 over several years in the analysis, forecasting, and mining information from time 5 series using methods that predominantly have nonstatistical character. Our main 6 goal is to show the readers from the area of probability theory and statistics that 7 nonstatistical methods can be pretty successful in time series processing. Besides 8 the standard tasks such as estimation of trend/trend-cycle and forecasting, our 9 methods are also powerful in providing additional information that can hardly be 10 obtained using the statistical methods, namely, evaluation of the local course, finding 11 perceptually important points, identification of structural breaks, finding periods 12 of monotonous behavior including its evaluation, or summarization of information 13 about large sets of time series. Our goal is not to beat statistical methods, but vice 14 versa—to benefit from the synergy of both.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules