OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective Numerical Optimisation
Citace
Bujok, P. a Kolenovský, P. Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective Numerical Optimisation.
In:
2022 IEEE Congress on Evolutionary Computation: 2022 IEEE Congress on Evolutionary Computation (CEC) 2022-07-18 Padua, Italy.
Piscataway, NJ, USA: IEEE, 2022. s. 1-8. ISBN 978-1-6654-6708-7.
Subtitle
Publication year:
2022
Obor:
Informatika
Number of pages:
8
Page from:
1
Page to:
8
Form of publication:
Elektronická verze
ISBN code:
978-1-6654-6708-7
ISSN code:
Proceedings title:
2022 IEEE Congress on Evolutionary Computation (CEC)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Piscataway, NJ, USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
2022 IEEE Congress on Evolutionary Computation
Místo konání konference:
Padua, Italy
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
000859282000214
EID:
2-s2.0-85138735431
Key words in English:
Differential Evolution, Evolution Strategy, cooperative model, competition, experiments, Eigen crossover
Annotation in original language:
In this paper, a cooperative model of four well-performing evolutionary algorithms enhanced by Eigen crossover is proposed and applied to a set of problems CEC 2022. The four adaptive algorithms employed in this model are - Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), Differential Evolution with Covariance Matrix Learning and Bimodal Distribution Parameter Setting (CoBiDE), an adaptive variant of jSO, and Differential Evolution With an Individual-Dependent Mechanism (IDE). For the higher efficiency of the cooperative model, a linear population-size reduction mechanism is employed. The model was introduced for CEC 2019. Here, Eigen crossover is applied for each cooperating algorithm. The provided results show that the proposed model of four Evolutionary Algorithms with Eigen crossover (EA4eig) is able to solve ten out of 24 optimisation problems. Moreover, comparing EA4eig with four state-of-the-art variants of adaptive Differential Evolution illustrates the superiority of the newly designed optimiser.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/22:A2302GV8
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules