OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
A Recommender System for Recommending Suitable Products in E-shop Using Explanations
Citace
Walek, B. a Fajmon, P. A Recommender System for Recommending Suitable Products in E-shop Using Explanations.
In:
3rd International Conference on Artificial Intelligence, Robotics and Control, AIRC 2022 2022-05-20 Virtuální konference.
Cairo: Institute of Electrical and Electronics Engineers Inc., 2022. s. 16-20. ISBN 978-166545947-1.
Subtitle
Publication year:
2022
Obor:
Number of pages:
5
Page from:
16
Page to:
20
Form of publication:
Elektronická verze
ISBN code:
978-166545947-1
ISSN code:
Proceedings title:
3rd International Conference on Artificial Intelligence, Robotics and Control, AIRC 2022
Proceedings:
Mezinárodní
Publisher name:
Institute of Electrical and Electronics Engineers Inc.
Place of publishing:
Cairo
Country of Publication:
Název konference:
Místo konání konference:
Virtuální konference
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85136193376
Key words in English:
recommender system, e-shop recommender system, hybrid recommender system, explanations, content-based filtering, collaborative filtering
Annotation in original language:
This article proposes a recommender system for recommending relevant products in e-shop using explanations. The proposed system consists of three recommender modules called VIEW, RATING, and PURCHASE. The recommender modules use a content-based filtering approach and a collaborative filtering approach. The proposed recommender system works with explanations that contain arguments why the system recommended the specific product. Based on these explanations the user sees why specific products are recommended by the system. The proposed system was experimentally verified and the results of the experimental verification are discussed.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/22:A2302GN5
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules