OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Image segmentation losses with modules expressing a relationship between predictions
Citace
Hurtík, P., Molek, V. a ZÁMEČNÍKOVÁ, H. Image segmentation losses with modules expressing a relationship between predictions.
In:
IPMU 2022: Information Processing and Management of Uncertainty in Knowledge-Based Systems 2022-07-11 Milano.
Milano: Springer, 2022. s. 343-354. ISBN 978-3-031-08973-2.
Subtitle
Publication year:
2022
Obor:
Obecná matematika
Number of pages:
12
Page from:
343
Page to:
354
Form of publication:
Tištená verze
ISBN code:
978-3-031-08973-2
ISSN code:
1865-0929
Proceedings title:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Milano
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IPMU 2022
Místo konání konference:
Milano
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85135031213
Key words in English:
Image segmentation; Smooth loss function; Soft argmax
Annotation in original language:
We focus on semantic image segmentation with the usage of deep neural networks and give emphasis on the loss functions used for training the networks. Considering region-based losses, Dice loss, and Tversky loss, we propose two independent modules that easily modify the loss functions to take into account the relationship between the class predictions and increase the slope of the gradient. The first module expresses the ambiguity between classes and the second module utilizes a differentiable soft argmax function. Each of the modules is used before the standard loss is computed and remains untouched. In the benchmark, we involved two neural network architectures with two different backbones, selected two loss functions, and examined separately two scenarios for softmax and sigmoid top activation functions. In the experiment, we demonstrate the usefulness of our modules by improving the IOU and F1 coefficients on the test dataset for all scenarios tested. Moreover, the usage of the modules decreases overfitting. The proposed modules are easy to integrate into existing solutions and add near-zero computational overhead.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/22:A2302FC5
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules