OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Zavřít
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Typ záznamu:
kapitola v odborné knize (C)
Domácí pracoviště:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Název:
Normal Forms for Fuzzy Relations and their Contribution to Universal Approximation
Citace
Perfilieva, I. Normal Forms for Fuzzy Relations and their Contribution to Universal Approximation.
In:
Intelligent Systems for Information Processing: From Representation to Applications.
1. vyd. Amsterdam: Elsevier, 2003. s. 381-392. ISBN 0-444-51379-5.
Podnázev
Rok vydání:
2003
Obor:
Obecná matematika
Forma vydání:
Kód ISBN:
0-444-51379-5
Název knihy v originálním jazyce:
Intelligent Systems for Information Processing: From Representation to Applications
Název edice a číslo svazku:
Místo vydání:
Amsterdam
Název nakladatele:
Elsevier
Označení vydání
(číslo vydání):
1:
Vydáno:
Autor zdrojového dokumentu:
Počet stran:
12
Počet stran knihy:
Strana od:
381
Strana do:
392
Počet výtisků knihy:
EID:
Klíčová slova anglicky:
fuzzy relation; disjunctive normal form; conjunctive normal form; extensional function
Popis v původním jazyce:
This paper continues the investigation of approximating properties of generalized normal forms in fuzzy logic. The problem is formalized and solved algebraically. Normal forms are considered in two variants: infinite and finite. It is proved that infinite normal forms are universal representation formulas whereas finite normal forms are universal approximation formulas for extensional functions. The estimation of the quality of approximation is suggested. Moreover, functions which can be precisely represented by the discrete normal forms are considered.
Popis v anglickém jazyce:
This paper continues the investigation of approximating properties of generalized normal forms in fuzzy logic. The problem is formalized and solved algebraically. Normal forms are considered in two variants: infinite and finite. It is proved that infinite normal forms are universal representation formulas whereas finite normal forms are universal approximation formulas for extensional functions. The estimation of the quality of approximation is suggested. Moreover, functions which can be precisely represented by the discrete normal forms are considered.
Seznam ohlasů
Ohlas
R01:
RIV/61988987:17310/03:00000045
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules