OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
>
Publ3 search
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra matematiky (31100)
Title:
Graph Neural Networks for Scheduling of SMT Solvers
Citace
Mojžíšek, D., Hůla, J. a Janota, M. Graph Neural Networks for Scheduling of SMT Solvers.
In:
IEEE ICTA 2021: IEEE International Conference on Tools with Artificial Intelligence (ICTAI) 2021-11-01 Online.
Washington, DC, USA: IEEE, 2021. s. 447-451. ISBN 978-1-6654-0898-1.
Subtitle
Publication year:
2021
Obor:
Number of pages:
4
Page from:
447
Page to:
451
Form of publication:
Elektronická verze
ISBN code:
978-1-6654-0898-1
ISSN code:
Proceedings title:
IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
Washington, DC, USA
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE ICTA 2021
Místo konání konference:
Online
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
Graph Neural Networks, SMT, solver scheduling
Annotation in original language:
This paper develops an approach to the scheduling of solvers in the domain of Satisfiability Modulo Theories (SMT) using a Graph Neural Network (GNN). In contrast to related methods, GNNs do not require manual feature design as they enable discovering relevant features in the raw data. We train them to predict the effectivity of individual solvers on a given problem. Rather than choosing only one solver with the best prediction, we schedule the solvers by ordering them according to the predicted runtime and dividing the overall runtime into all solvers uniformly. We compare our approach to several baselines. In the selected benchmarks, we show a substantial improvement over these baselines in terms of the number of solved problems and overall solving time.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules