OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Katedra informatiky a počítačů (31400)
Title:
Harris Hawks Optimisation: Using of an Archive
Citace
Bujok, P. Harris Hawks Optimisation: Using of an Archive.
In:
20th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2020): Lecture Notes in Artificial Intelligence 12854 2021-06-20 Zakopane, Polsko.
Cham, Switzerland: Springer, 2021. s. 415-423. ISBN 978-303087985-3.
Subtitle
Publication year:
2021
Obor:
Informatika
Number of pages:
9
Page from:
415
Page to:
423
Form of publication:
Elektronická verze
ISBN code:
978-303087985-3
ISSN code:
0302-9743
Proceedings title:
Lecture Notes in Artificial Intelligence 12854
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham, Switzerland
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
20th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2020)
Místo konání konference:
Zakopane, Polsko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85117512842
Key words in English:
Swarm algorithm, Harris hawks optimisation, real-worldproblems, archive, experimental comparison.
Annotation in original language:
This paper proposes an enhanced variant of the novel and popular Harris Hawks Optimisation (HHO) method. The original HHO algorithm was studied in many research projects, and a lot of hybrid (cooperative) variants of HHO was proposed. In this research study, an advanced HHO algorithm with an archive of the old solutions is proposed (HHOA). The proposed method is experimentally compared with the original HHO algorithm on a set of 22 real-world problems (CEC 2011). The results illustrate the superiority of HHOA because it outperforms HHO significantly in 20 out of 22 problems, and it is never significantly worse. Four well-known nature-based algorithms were employed to compare the efficiency of the proposed algorithm. HHOA achieves the best results in overall statistical comparison. A more detailed comparison shows that HHOA achieves the best results in half real-world problems, and it is never the worst-performing method. A newly employed archive of old solutions significantly increases the performance of the original HHO algorithm.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17310/21:A2202A0W
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules