OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
On Manifold Weight Assignment Related to Fuzzy Partition
Citace
JANEČEK, J. a Perfiljeva, I. On Manifold Weight Assignment Related to Fuzzy Partition.
In:
ISCAMI 2020: Proceedings of the 21st International Student Conference on Applied Mathematics and Informatics 2020-09-08 Malenovice.
Ostrava: Ostravská univerzita, 2020. s. 38-39. ISBN 978-80-7599-199-7.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
2
Page from:
38
Page to:
39
Form of publication:
Tištená verze
ISBN code:
978-80-7599-199-7
ISSN code:
Proceedings title:
Proceedings of the 21st International Student Conference on Applied Mathematics and Informatics
Proceedings:
Mezinárodní
Publisher name:
Ostravská univerzita
Place of publishing:
Ostrava
Country of Publication:
Sborník vydaný v ČR
Název konference:
ISCAMI 2020
Místo konání konference:
Malenovice
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
Key words in English:
dimensionality reduction, LLE, fuzzy partition
Annotation in original language:
We assume that a given high-dimensional data is embedded into a differentiable manifold. At the beginning, this manifold is unknown. The purpose is to characterize this manifold using its substantial parameters extracted from the sampled data. We would like to chacterize the closeness between data points. In this research, we focus on the locally linear embedding (LLE) algorithm. If we assume that two points are close enough, the LLE determines their non-zero closeness. The sum of the closeness values between a fixed point and all points that are close enough, is normalized to 1. The values of closeness are stored in an adjacency matrix W of the corresponding weighted graph representation of the data. If, for example, we assume that the point x has two neighbours, y and z producing non-singular correlation matrix, we showed that the closeness between the points x and y is equal to ... Another way to determine the closeness values is by their extraction from a fuzzy partition. We found cases in which we can redesign the basic function so that the weights given by the LLE and by the fuzzy partition coincide. The corresponding F1-transform component (determined by the weighted inner product given by the same fuzzy partition unit) is compared with lower-dimensional embedding given by the LLE.
Annotation in english language:
References
Reference
R01:
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules