OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Keypoints selection using Evolutionary Algorithms
Citace
Adamczyk, D. a Hůla, J. Keypoints selection using Evolutionary Algorithms.
In:
20th Conference Information Technologies - Applicationsand Theory: Proceedings of the 20th Conference Information Technologies - Applications and Theory (ITAT 2020) 2020-09-18 Oravská Lesná, Slovensko.
CEUR-WS, 2020. s. 186-191. ISSN 1613-0073.
Subtitle
Publication year:
2020
Obor:
Informatika
Number of pages:
6
Page from:
186
Page to:
191
Form of publication:
Elektronická verze
ISBN code:
neuvedeno
ISSN code:
1613-0073
Proceedings title:
Proceedings of the 20th Conference Information Technologies - Applications and Theory (ITAT 2020)
Proceedings:
Publisher name:
CEUR-WS
Place of publishing:
neuvedeno
Country of Publication:
Název konference:
20th Conference Information Technologies - Applicationsand Theory
Místo konání konference:
Oravská Lesná, Slovensko
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Evropská akce
WoS code:
EID:
2-s2.0-85095974800
Key words in English:
neural networks; evolutionary algorithm; keypoint; optimization
Annotation in original language:
This contribution presents the use of neural networks trained by an evolutionary algorithm for a selection of visual keypoints. Visual keypoints play an important role in many computer vision tasks but many algorithms for keypoint detection produce many keypoints which are not useful for the target task. We aim to filter them in a data-driven way. Our model uses a neural network that ranks each keypoint by a relevancy score that we use to choose top-K keypoints with the highest rank. These keypoints are then used for the target task, which is image classification in our case. Because we use discrete operations in our model, we can not easily obtain gradients for weight updates. We, therefore, optimize the weights of the network by CMA-ES algorithm, which enables efficient optimization of continuous parameters of black-box functions. In this article, we present our initial experiments with this method.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A210268C
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules