OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
A Fuzzy Approach for Similarity Measurement in Time Series, Case Study for Stocks
Citace
Mirshahi, S. a Novák, V. A Fuzzy Approach for Similarity Measurement in Time Series, Case Study for Stocks.
In:
IPMU 2020: Information Processing and Management of Uncertainty in Knowledge-Based Systems 2020-06-15 Lisabon.
Cham: Springer, 2020. s. 567-577. ISBN 978-3-030-50152-5.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
11
Page from:
567
Page to:
577
Form of publication:
Tištená verze
ISBN code:
978-3-030-50152-5
ISSN code:
1865-0929
Proceedings title:
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Proceedings:
Mezinárodní
Publisher name:
Springer
Place of publishing:
Cham
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IPMU 2020
Místo konání konference:
Lisabon
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85086260228
Key words in English:
Similarity measurements; Stock markets similarity; Time series analysis; Time series data mining
Annotation in original language:
In this paper, we tackle the issue of assessing similarity among time series under the assumption that a time series can be additively decomposed into a trend-cycle and an irregular fluctuation. It has been proved before that the former can be well estimated using the fuzzy transform. In the suggested method, first, we assign to each time series an adjoint one that consists of a sequence of trend-cycle of a time series estimated using fuzzy transform. Then we measure the distance between local trend-cycles. An experiment is conducted to demonstrate the advantages of the suggested method. This method is easy to calculate, well interpretable, and unlike standard euclidean distance, it is robust to outliers.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21025VN
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules