OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
F-Transform and Convolutional NN:Cross-Fertilization and Step Forward
Citace
Molek, V. a Perfiljeva, I. F-Transform and Convolutional NN:Cross-Fertilization and Step Forward.
In:
IEEE World Congress on Computational Intelligence: EEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2020-07-19 Glasgow, United Kingdom.
IEEE, 2020. ISBN 978-1-7281-6933-0.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
6
Page from:
neuvedeno
Page to:
neuvedeno
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-6933-0
ISSN code:
1544-5615
Proceedings title:
EEE International Conference on Fuzzy Systems (FUZZ-IEEE)
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
neuvedeno
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE World Congress on Computational Intelligence
Místo konání konference:
Glasgow, United Kingdom
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85090500181
Key words in English:
F-transform,convolutional neural networks,pretraining
Annotation in original language:
We propose to assign the F-transform kernels to the CNN weights and compare them with commonly used initialization. By this, we develop a new initialization mechanism where the F-transform convolution kernels are used in the convolutional layers. Based on a series of experiments, we demonstrate the suitability of the F-transform-based deep neural network in the domain of image processing with the focus on classification. Moreover, we support our insight by revealing the similarity between the F-transform and first-layer kernels in certain deep neural networks.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21025CC
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules