OU Portal
Log In
Welcome
Applicants
Z6_60GI02O0O8IDC0QEJUJ26TJDI4
Error:
Javascript is disabled in this browser. This page requires Javascript. Modify your browser's settings to allow Javascript to execute. See your browser's documentation for specific instructions.
{}
Close
Publikační činnost
Probíhá načítání, čekejte prosím...
publicationId :
tempRecordId :
actionDispatchIndex :
navigationBranch :
pageMode :
tabSelected :
isRivValid :
Record type:
stať ve sborníku (D)
Home Department:
Ústav pro výzkum a aplikace fuzzy modelování (94410)
Title:
Training neural network over encrypted data
Citace
Molek, V. a Hurtík, P. Training neural network over encrypted data.
In:
IEEE Third International Conference Data Stream Mining & Processing 2020: Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020 2020 Lviv, Ukrajina.
IEEE, 2020. s. 23-27. ISBN 978-1-7281-3214-3.
Subtitle
Publication year:
2020
Obor:
Obecná matematika
Number of pages:
6
Page from:
23
Page to:
27
Form of publication:
Elektronická verze
ISBN code:
978-1-7281-3214-3
ISSN code:
Proceedings title:
Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020
Proceedings:
Mezinárodní
Publisher name:
IEEE
Place of publishing:
neuvedeno
Country of Publication:
Sborník vydaný v zahraničí
Název konference:
IEEE Third International Conference Data Stream Mining & Processing 2020
Místo konání konference:
Lviv, Ukrajina
Datum zahájení konference:
Typ akce podle státní
příslušnosti účastníků:
Celosvětová akce
WoS code:
EID:
2-s2.0-85093663233
Key words in English:
image permutation, image data encryption, neural network, image classification
Annotation in original language:
We are answering the question whenever systems with convolutional neural network classifier trained over plain and encrypted data keep the ordering according to accuracy. Our motivation is need for designing convolutional neural network classifiers when data in their plain form are not accessible because of private company policy or sensitive data gathered by police. We propose to use a combination of fully connected autoencoder together with a convolutional neural network classifier. The autoencoder transforms the data info form that allows the convolutional classifier to be trained. We present three experiments that show the ordering of systems over plain and encrypted data. The results show that the systems indeed keep the ordering, and thus a NN designer can select appropriate architecture over encrypted data and later let data owner train or fine-tune the system/CNN classifier on the plain data.
Annotation in english language:
References
Reference
R01:
RIV/61988987:17610/20:A21025BN
Complementary Content
Deferred Modules
${title}
${badge}
${loading}
Deferred Modules